225 research outputs found

    Constraining local UV field geometry at reionization using Milky Way satellites

    Full text link
    We present a new semi-analytical model of the population of satellite galaxies of the Milky Way, aimed at estimating the effect of the geometry of reionization at galaxy scale on the properties of the satellites. In this model reionization can be either: (A) externally-driven and uniform, or (B) internally-driven, by the most massive progenitor of the Milky Way. In the latter scenario the propagation of the ionisation front and photon dilution introduce a delay in the photo-evaporation of the outer satellites' gas with respect to the inner satellites. As a consequence, outer satellites experience a longer period of star formation than those in the inner halo. We use simple models to account for star formation, the propagation of the ionisation front, photo-evaporation and observational biases. Both scenarios yield a model satellite population that matches the observed luminosity function and mass-to-light ratios. However, the predicted population for scenario (B) is significantly more extended spatially than for scenario (A), by about 0.3 dex in distance, resulting in a much better match to the observations. The survival of the signature left by the local UV field during reionization on the radial distribution of satellites makes it a promising tool for studying the reionization epoch at galaxy scale in the Milky Way and nearby galaxies resolved in stars with forthcoming large surveys.Comment: Proceedings of the conference "Assembling the puzzle of the Milky Way" held at Le Grand Bornand, 201

    Fitting galaxy spectra with STECKMAP: a user guide

    Full text link
    STECKMAP stands for STEllar Content and Kinematics via Maximum A Posteriori likelihood. It is a tool for interpreting galaxy spectra in terms of their stellar populations, through the derivation of their star formation history, age-metallicity relation, kinematics and extinction. To do so, the observed spectrum is projected onto a temporal sequence of models of single stellar populations, so as to determine a linear combination of these models, that fit the observed spectrum best. The weights of the various components of this linear combination indicate the stellar content of the population. This procedure is regularized using various penalizing functions. The principles of the method are detailed in Ocvirk et al. 2006a,b. The STECKMAP software package is public and freely available at http://astro.u-strasbg.fr/~ocvirk/. A number of authors have already adopted it and use it in their daily research. This user guide aims at accompanying the user through the setup and first runs of STECKMAP. The last chapter will help the user to understand and improve his results and experience with the code.Comment: 27 page

    The impact of binary-star yields on the spectra of galaxies

    Get PDF
    One of the complexities in modelling integrated spectra of stellar populations is the effect of interacting binary stars besides Type Ia supernovae (SNeIa). These include common envelope systems, cataclysmic variables, novae, and are usually ignored in models predicting the chemistry and spectral absorption line strengths in galaxies. In this paper, predictions of chemical yields from populations of single and binary stars are incorporated into a galactic chemical evolution model to explore the significance of the effects of these other binary yields. Effects on spectral line strengths from different progenitor channels of SNeIa are also explored. Small systematic effects are found when the yields from binaries, other than SNeIa, are included, for a given star formation history. These effects are, at present, within the observational uncertainties on the line strengths. More serious differences can arise in considering different types of SNIa models, their rates and contributions

    Validation of stellar population and kinematical analysis of galaxies

    Full text link
    3D spectroscopy produces hundreds of spectra from which maps of the characteristics of stellar populations (age-metallicity) and internal kinematics of galaxies can be derived. We carried on simulations to assess the reliability of inversion methods and to define the requirements for future observations. We quantify the biases and show that to minimize the errors on the kinematics, age and metallicity (in a given observing time) the size of the spatial elements and the spectral dispersion should be chosen to obtain an instrumental velocity dispersion comparable to the physical dispersion.Comment: 5 pages, 3 figures, extended version of a poster proceeding to appear in "Science Perspectives for 3D Spectroscopy", eds. M. Kissler-Patig, M. M. Roth and J. R. Walsh, ESO Astrophysics Symposia. (The two last pages with figures are not in the conference proceedings.

    Fake star formation bursts: blue horizontal branch stars masquerade as young stars in optical integrated light spectroscopy

    Full text link
    Model color magnitude diagrams of low-metallicity globular clusters usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modelling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyse the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.) and the stellar population models Vazdekis et al. and Bruzual & Charlot, and focus on the reconstructed stellar age distributions. Firstly, we show that background/foreground contamination correlates with E(B-V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of a E(B-V) filtering. We then identify a "confusion zone" where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch ratio indicates that the confusion is driven by HB morphology: red horizontal branch clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H]=[-2,-1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an HII region are present.Comment: 14 pages, 6 figures, accepted for publication in Ap

    Vast planes of satellites in a high resolution simulation of the Local Group: comparison to Andromeda

    Full text link
    We search for vast planes of satellites (VPoS) in a high resolution simulation of the Local Group performed by the CLUES project, which improves significantly the resolution of former similar studies. We use a simple method for detecting planar configurations of satellites, and validate it on the known plane of M31. We implement a range of prescriptions for modelling the satellite populations, roughly reproducing the variety of recipes used in the literature, and investigate the occurence and properties of planar structures in these populations. The structure of the simulated satellite systems is strongly non-random and contains planes of satellites, predominantly co-rotating, with, in some cases, sizes comparable to the plane observed in M31 by Ibata et al.. However the latter is slightly richer in satellites, slightly thinner and has stronger co-rotation, which makes it stand out as overall more exceptional than the simulated planes, when compared to a random population. Although the simulated planes we find are generally dominated by one real structure, forming its backbone, they are also partly fortuitous and are thus not kinematically coherent structures as a whole. Provided that the simulated and observed planes of satellites are indeed of the same nature, our results suggest that the VPoS of M31 is not a coherent disc and that one third to one half of its satellites must have large proper motions perpendicular to the plane

    High resolution simulations of the reionization of an isolated Milky Way - M31 galaxy pair

    Full text link
    We present the results of a set of numerical simulations aimed at studying reionization at galactic scale. We use a high resolution simulation of the formation of the Milky Way-M31 system to simulate the reionization of the local group. The reionization calculation was performed with the post-processing radiative transfer code ATON and the underlying cosmological simulation was performed as part of the CLUES project. We vary the source models to bracket the range of source properties used in the literature. We investigate the structure and propagation of the galatic ionization fronts by a visual examination of our reionization maps. Within the progenitors we find that reionization is patchy, and proceeds locally inside out. The process becomes patchier with decreasing source photon output. It is generally dominated by one major HII region and 1-4 additional isolated smaller bubbles, which eventually overlap. Higher emissivity results in faster and earlier local reionization. In all models, the reionization of the Milky Way and M31 are similar in duration, i.e. between 203 Myr and 22 Myr depending on the source model, placing their zreion between 8.4 and 13.7. In all models except the most extreme, the MW and M31 progenitors reionize internally, ignoring each other, despite being relatively close to each other even during the epoch of reionization. Only in the case of strong supernova feedback suppressing star formation in haloes less massive than 10^9 M_sun, and using our highest emissivity, we find that the MW is reionized by M31.Comment: Accepted for publication in ApJ. 14 pages, 4 figures, 1 tabl

    Comparison of different spectral population models

    Get PDF
    We have compared simple stellar populations (SSPs) generated with different population synthesis tools: BC03, Vazdekis and Pegase.HR and different stellar libraries: ELODIE3.1, SteLib and MILES. We find that BC03/SteLib SSPs are biased toward solar metallicity, however Pegase.HR/ELODIE3.1 and Vazdekis/MILES are extremely consistent. The extensive coverage of the space of atmospheric parameters in the large stellar libraries allows precise synthesis for a large range of ages (0.1 .. 10 Gyr) and metallicities (-2 .. +0.4 dex) limited by the quality of the determination of stellar parameters (like temperature scale of the giants)
    corecore